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Abstract

Ocular regenerative therapies are on track to revolutionize treatment of numerous blinding 

disorders, including corneal disease, cataract, glaucoma, retinitis pigmentosa, and age-related 

macular degeneration. A variety of transplantable products, delivered as cell suspensions or as 

preformed 3D structures combining cells and natural or artificial substrates, are in the pipeline. 

Here we review the status of clinical and preclinical studies for stem cell-based repair, covering 

key eye tissues from front to back, from cornea to retina, and including bioengineering approaches 
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that advance cell product manufacturing. While recognizing the challenges, we look forward to a 

deep portfolio of sight-restoring, stem cell-based medicine.

Introduction

It is apt to begin with a quote from Charles Bonnet, a pioneering researcher in regenerative 

studies who would lose his vision, curtailing a most promising career. Bonnet performed 

some of the earliest work on regenerating animals, those capable of ‘recovering from 

cutting’, in the 1740s. Bonnet saw the possibilities that regeneration presented for science 

and medicine and was particularly enthralled by the idea of a ‘germe’ within tissues that was 

capable of regeneration – perhaps a harbinger of the stem cell concept. An accomplished 

Naturalist by the age of 25, he preferred Nature and Philosophy to his profession as a 

lawyer, but his sight began failing, altering the course of his studies. He documented the life 

changes due to vision loss, including the unnerving visual hallucinations that he attributed to 

changes in visual perception, which are now known as Charles Bonnet Syndrome. The 

profound physical and emotional challenges of vision loss – compounded by loss of 

independence and compromised life quality, career prospects, and earning opportunities – 

are strong motivators to identify new ways to restore sight, and remain so today.

The human eye is a remarkable structure produced from the coordinated development of 

multiple tissues, with contributions of neuroectodermal, ectodermal, and mesodermal origin 

(Graw, 2010). Compromising the function of any of these major ocular tissues can lead to 

blindness (Figure 1). There is a notable history of trail-blazing work in ocular medicine, 

exemplified by tissue transplantation, the use of laser therapy, and the recent approval of the 

first gene therapy for RPE-65-based retinal dystrophy. We may consider that the eye is also 

pioneering cell therapy for advanced disease involving cell loss, and the possibility for 

combinations of cell and gene therapy in the future is exciting. However, before we can 

achieve these therapeutic ends, we must address significant hurdles in cell manufacture, 

surgical delivery, and functional restoration. Here we describe the clinical status of ocular 

regenerative therapies, review some of the most promising preclinical work, consider the 

challenges and look to the future, to what might be accomplished in the next decade. Our 

approach is to review the state of the field from cornea to retina, summarizing the advances 

for each target tissue, as illustrated in Figure 2.

Cornea, Repair of Three Layers.

The cornea is the window to the visual system, acting as a barrier and a lens to focus light 

entering the eye. Loss of corneal integrity and transparency, resulting in reduced vision, 

afflicts more than 23 million individuals worldwide (Flaxman et al., 2017). To date, stem 

cell-based applications have demonstrated restoration of function in each of the three major 

corneal layers: the superficial epithelium, the stroma, and the inner endothelium.

The corneal epithelium (CE) is a self-renewing tissue that is maintained by stem cells 

localized at the peripheral limbus (Figure 1). Limbal stem cells produce transient amplifying 

daughter cells that regenerate the epithelium through centripetal migration. Destruction of 

the limbal stem cell niche results in Limbal Stem Cell Deficiency (LSCD). Congenital or 
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acquired LSCD impairs corneal epithelium renewal, resulting in progressive opacification, 

chronic ulceration, conjunctivalization, and neovascularization with accompanying pain, 

blindness, and disfigurement. Rescue of LSCD by transplantation of stem cell-containing 

limbal biopsy tissue was demonstrated as early as 1965 (Barraquer, 1965). A modified 

technique of transplanting limbal tissue fragments adhered to an amniotic membrane has 

more recently exhibited a high rate of success in 190 patients who maintained the previous 

good transparency in the underlying stroma (Sangwan and Sharp, 2017).

Pellegrini and colleagues pioneered clinical trials using cultured autologous limbal epithelial 

cells for transplantation (Pellegrini et al., 1997). After more than 10 years of clinical follow 

up, remarkably, corneal regeneration could be achieved in over 70% of cases if the limbal 

cell cultures contained a sufficient number (over 3%) of limbal stem cells, which were 

detected as holoclones expressing high levels of the p63 transcription factor (Rama et al., 

2010). The limbal stem cells were obtained by enzymatic extraction from a small biopsy and 

cultured on a fibrin glue support. Recent regulatory approval of this technique in the EU 

represents the first available application of stem cells for ocular therapy. Cultured autologous 

limbal epithelial cell transplantation has been reproduced by many groups, using varied 

supports, culture conditions, cell sources, and carriers, the most common now being 

amniotic membranes containing growth factors (Tsai et al., 2000; Zhang et al., 2016).

Limbal stem cells provide a self-organizing system that faithfully and stably reproduces 

corneal epithelial physiology over time. In cases where autologous cells are limiting, 

allogeneic cultivated limbal epithelial transplantation has been proposed as a therapeutic 

option, although the infiltration of host inflammatory cells often occurs in the absence of 

recipient stem cells, which can result in an inflammatory response and failure (Cheng et al., 

2017; Shortt et al., 2014; Shortt et al., 2010). The use of cell surface markers such as 

ABCB5 to purify limbal stem cell cultures is currently under development to potentially 

improve efficacy (Gonzalez et al., 2017; Ksander et al., 2014), although the role of ABCB5 

in human epithelial regeneration remains to be fully investigated. Progress to direct PSC 

differentiation to limbal epithelial lineages (Hanson et al., 2017; Mikhailova et al., 2016) 

promises to overcome current bottlenecks limiting limbal stem cell availability, to 

manufacture product for a wider population of LSCD patients.

The bulk of the cornea consists of the stroma, a connective tissue with a unique transparent 

extracellular matrix (ECM). The stroma is populated by quiescent, mesenchymal cells, 

termed keratocytes, which maintain stromal transparency in healthy tissue. In response to 

trauma or infection, however, stromal cells produce long-lasting opaque scar tissue 

(Funderburgh et al., 2001; Funderburgh et al., 2003). The incidence of corneal blindness due 

to stromal scarring greatly exceeds that of LSCD (Oliva et al., 2012; Ontario, 2008; Shortt et 

al., 2010), and only 7% of affected individuals worldwide have access to corneal 

transplantation, underscoring the great unmet medical need. Adult mesenchymal cells 

derived from stroma (sMSCs) produce a collagenous matrix in vitro that contains the 

molecular components and achieves the organization typical of the native stromal tissue (Du 

et al., 2007; Wu et al., 2014). sMSCs are localized in the limbal stroma where they are 

closely associated with epithelial stem cells (Chen et al., 2011; Dziasko et al., 2014; Higa et 

al., 2013; Massie et al., 2015). In vitro, co-culture with human sMSCs improves the 
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expansion and clonogenicity of human limbal epithelial stem cells (Xie et al., 2012), 

suggesting sMSCs may be a component of the limbal niche complex that supports self-

renewal. Epithelial and stromal stem cells are phenotypically and functionally distinct. 

Restoring cells to address LSCD does not fully reverse existing stromal opacity, nor is a 

healthy corneal stroma sufficient to revert the pathologic epithelial phenotype, in absence of 

limbal epithelium.

Transplantation of tissue generated in vitro from human sMSCs into corneal pockets in 

animal models yields a transparent stroma (Syed-Picard et al., 2016), which highlights the 

potential utility of corneal sMSCs to produce tissue for surgical replacement. sMSC 

transplantation can also remediate stromal scarring. Injection of human sMSCs into the 

cornea of lumican-knockout mice, which have hazy stroma due to deficient collagen fibril 

organization, results in remodeling (Du et al., 2009). Even more striking, sMSCs completely 

prevent stromal scarring in a mouse corneal debridement wound model (Basu et al., 2014). 

The mechanism of scar prevention in mice was found to depend on the ability of sMSCs to 

block infiltration of neutrophils into the cornea by secretion of the protein TSG-6 

(Hertsenberg et al., 2017). These data suggest that the anti-scarring effects of sMSCs are 

related to their immunomodulatory properties. Using a similar approach, an ongoing clinical 

trial (NCT02948023) examines the ability of sMSCs to reverse existing stromal scars in 

human patients.

The corneal endothelium is a post-mitotic epithelial monolayer lining the innermost cornea 

that maintains stromal hydration required for transparency. Endothelial decompensation is 

responsible for most (around 75–80%) of corneal opacity in the USA. Cells with clonogenic 

potential demonstrated in adult corneal endothelium, suggest that a dormant population of 

replication-competent endothelial progenitor cells is present (Amano et al., 2006; Yokoo et 

al., 2005). Experimental approaches to initiate endothelial regrowth include freeze damage 

to the central region in combination with application of the ROCK inhibitor Y-27632, which 

may activate dormant endothelial progenitor cells (Koizumi et al., 2014). Furthermore, 

transplantation of corneal endothelium has been demonstrated in human trials (Kinoshita et 

al., 2018). Derivation of functional corneal endothelial layers has also been reported from 

sMSCs (Hatou et al., 2013; Inagaki et al., 2017) and from PSCs (McCabe et al., 2015)(Song 

et al., 2016; Zhao and Afshari, 2016), and transcriptome profiling suggests high fidelity to 

primary corneal endothelial cells (McCabe et al., 2015), raising the possibility of a plentiful 

supply of autologous cells for personalized restoration of corneal endothelium.

Due to the simplicity of its structure, accessibility, and avascularity, the cornea serves as an 

ideal tissue to advance stem cell-based regenerative medicine applications. This has yielded 

the first approved ocular stem cell therapy for limbal restoration. The results of ongoing 

clinical trials will guide future stem cell therapies to restore vision to the millions of 

individuals suffering from corneal disorders that currently lack effective treatment options.

Lens Regeneration Using Endogenous Stem Cells

Along with the cornea, the transparent, biconvex lens in the anterior segment of the eye 

refracts light, constantly adjusting shape or ‘accommodating’ to focus (Figure 1). The lens 
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surface is covered entirely by the lens capsule, a protective, supportive basement membrane. 

Immediately under the capsule on the anteriorlateral surface is the lens epithelial cell layer. 

Developing lens fibers arise from the equatorial cells of the lens epithelium (Figure 1), 

which over time form thin, elongated, anuclear cells full of cytoplasmic crystallin proteins 

(Cvekl and Zhang, 2017).

Lens regeneration can occur in lower vertebrates during developmental stages, while adult 

regeneration is limited to some urodele amphibians, through transdifferentiation of corneal 

or iris tissues (Barbosa-Sabanero et al., 2012; Tsonis and Del Rio-Tsonis, 2004). In 

mammals, including rabbits, cats, and dogs, removal of lens contents while leaving the 

capsule can result in proliferation of residual lens epithelial stem/progenitor cells (LECs), 

thus generating new lens fibers (Tsonis and Del Rio-Tsonis, 2004)(Gwon, 2006). In humans, 

however, regrowth of lens tissue after cataract removal is disorganized and does not yield 

regeneration of a functional lens.

Cataract is a leading cause of blindness in the world (Stevens et al., 2013) and is treated by 

surgical lens extraction with implantation of an artificial intraocular lens (IOL). After 

cataract surgery however, visual axis opacification due to disorganized regeneration of the 

remaining LECs often leads to impaired vision, which in most cases can be corrected by a 

laser procedure. Notably, pediatric patients experience robust LEC proliferation on the IOL 

surface. Therefore, current pediatric cataract surgery is performed to maximally remove 

LECs that may regrow and compromise transparency of the visual axis. A large, 6mm 

diameter central capsulorhexis is opened in the center of the anterior lens capsule, then most 

of the lens material is removed, including the Pax6+, Sox2+ LECs (Cvekl and Zhang, 2017) 

associated with the lens capsule, thereby also limiting the possibility of functional lens 

regeneration.

To promote useful lens regeneration, a minimally invasive surgical method has been 

developed using a small, eccentric capsulorhexis to reduce wound size and move the 

opening to the lens periphery, thus preserving LEC stem cells and the integrity of the lens 

capsule (Lin et al., 2016). This new technique demonstrated functional lens regeneration in 

rabbit and macaque models. A clinical trial enrolling infants with bilateral congenital 

cataract showed that the small capsule opening healed within one month and a transparent 

lens structure began to regenerate within three months. From follow-up to eight months, the 

lens attained normal central thickness with accommodative power. While the regenerated 

lenses had imperfections, the visual axis was mostly clear with corresponding visual acuity 

improvement. This ground-breaking pediatric cataract surgery is still in early stages of 

evaluation and requires additional study to address possible complications such as cataract 

reoccurrence due to underlying genetic defects and the risk of developing amblyopia, 

impaired vision due to inappropriate visual stimulation during the months required for lens 

regeneration (Liu et al., 2018; Solebo et al., 2018; Vavvas et al., 2018).

Could we expand this regenerative approach to adult cataract surgery affecting tens of 

millions of people? A key challenge is that age-related declines in the LEC’s regenerative 

capacity may necessitate augmentation, for example by incorporating biomaterials. 

Furthermore, current adult cataract surgery is safe and rapidly restores functional vision, 
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whereas lens regeneration, if at all possible, could require several months in adults. 

Nevertheless, accelerated lens regeneration has the potential to restore both lens clarity and 

accommodative capacity to address both presbyopia and cataract.

Trabecular Meshwork Restoration - the Major Pathological Site of Primary 

Open Angle Glaucoma

Primary open angle glaucoma represents about 90% of all the glaucomas, affecting about 

1% of the total population. It is defined by an open, normal appearing anterior chamber 

angle (Figure 1) with raised intraocular pressure (IOP). The condition is painless, and by the 

time vision loss is detected, many retinal ganglion cells (RGCs), the projection neurons that 

carry signals from retina to brain, are irreversibly lost. IOP is determined by the continuous 

generation of aqueous humor by the ciliary processes (inflow) and its elimination (outflow); 

the trabecular meshwork (TM), together with Schlemm’s canal, collector channels and 

aqueous veins, constitute the major outflow pathways in the eye. The TM is located in the 

anterior chamber angle between the cornea and the iris (Figure 1) and is crucial to provide 

flow resistance to the aqueous humor and thus control IOP. The current treatment of 

glaucoma is focused on lowering IOP by pharmacological reduction of aqueous humor 

production or by laser-based and surgical procedures to provide an aqueous humor outflow 

by-pass (Fan and Wiggs, 2010). An alternative or complementary strategy is to target the 

TM, and pharmacological agents that act on the TM to increase outflow e.g. ROCK 

inhibitors, adenosine agonists, and statins, are being developed (Kopczynski and Epstein, 

2014) and some have shown encouraging results in the clinic (Hoy, 2018). Understanding 

the mechanisms leading to TM cell dysfunction and loss in the glaucomatous eye can 

illuminate novel strategies to target this primary pathological site (Wang et al., 2001).

The TM has three distinct regions: the inner uveal meshwork, the deeper corneoscleral 

meshwork, and the deepest, outermost juxtacanalicular connective tissue (JCT). The JCT 

region of the TM and/or the adjacent endothelial lining of the inner wall of Schlemm’s canal 

generate the major flow resistance (Johnson, 2006; Tamm, 2009). Flow through the TM 

structure is segmental, i.e., non-uniform, and divided into high- and low-flow regions. 

Importantly, the cellularity of the TM is altered with age and in glaucoma, with 

accumulation of ECM, altered junctions between cells of the TM and Schlemm’s canal, and 

TM cell death, together associated with IOP elevation. Aged and glaucomatous TM cells 

show signs of senescence and are susceptible to ROS-induced damage (Chhunchha et al., 

2017; Saccà et al., 2007).

Stem cell therapy has the potential to restore TM function, as well as protect the optic nerve 

from further damage (Chamling et al., 2016). Replacing glaucomatous TM cells with 

healthy stem cell-derived cells may restore the microenvironment and make it suitable for 

reparative proliferation and functional regulation of aqueous outflow. TM stem cells were 

discovered at the region where the TM inserts (Figure 1) and have been isolated by side-

population cell sorting, clonal culture, and sphere culture (Gonzalez et al., 2006; Kelley et 

al., 2009; Yun et al., 2016). They are multipotent and differentiate into TM cells in vitro and 

in vivo, where they home to the TM region and can regenerate the TM structure and reduce 
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IOP in mouse models (Du et al., 2012; Du et al., 2013; Du et al., 2016). In addition, induced 

pluripotent stem cell (iPSC)-derived TM cells were shown to restore IOP-related 

homeostatic function in a human anterior segment ex vivo model (Abu-Hassan et al., 2015) 

and in glaucoma mouse models in vivo (Zhu et al., 2016; Zhu et al., 2017). Moving forward, 

preclinical studies focused on stem cell-derived TM cell transplantation are needed to 

establish their safety profile and potential activity to move to clinical trial in glaucoma 

patients. Additionally, stem cell fabricated TM models provide opportunities for better 

understanding trabecular outflow physiology, glaucoma pathophysiology, and drug testing.

Differentiation and Transplantation of Retinal Ganglion Cells

Optic neuropathies represent a cluster of diseases in which RGC axons are injured in the 

optic nerve. As with other damage or degeneration in the central nervous system (CNS) of 

adult mammals including humans, RGCs fail to regenerate their axons and the cell bodies 

die at some point thereafter. Given that there are no endogenous stem cells that normally 

regenerate retinal neurons in adults, the loss of RGCs can lead to permanent vision loss, 

irrespective of the cause of their death, such as traumatic damage, ischemia, optic neuritis, 

glaucoma, or other diseases. Glaucomatous optic neuropathy is a leading cause of 

irreversible blindness in the world and vision restoration remains a major unmet need.

Stem and progenitor cells offer opportunities to treat glaucoma and other optic neuropathies. 

One approach is to transplant cells that secrete trophic factors, to preserve existing cells and 

prevent further cell loss via a neuroprotective strategy. For example, fetal human retinal 

progenitor cells (RPCs) implanted into the vitreous are being channeled through preclinical 

testing and regulatory preparation in anticipation of neuroprotection clinical trials (Klassen, 

2016), and these may prove valuable in treating glaucoma. MSCs transplanted into the 

vitreous body in a rodent model of glaucoma showed considerable neuroprotection against 

RGC death without integration of the transplanted stem cells (Johnson et al., 2010). Bone 

marrow-derived stem cells have been tested in humans in a Phase I safety trial for retinal 

diseases (not optic neuropathies) with no overt inflammatory or other adverse event (Park et 

al., 2014).

Cell replacement therapy faces a much tougher set of hurdles related to appropriate RGC 

differentiation and integration, and the field is just beginning to make significant preclinical 

progress in these areas. To restore visual function, stem cells would have to properly 

differentiate into RGCs, integrate with presynaptic amacrine and bipolar cells in the retina to 

receive visual information, grow their axons down the damaged or diseased optic nerve, and 

properly connect with appropriate targets in the lateral geniculate nucleus and other regions 

of the brain (Moore and Goldberg, 2010).

How can we promote RGC differentiation from stem cells? Recent progress has been made 

in identifying the key transcription factor regulators relevant to RGC differentiation during 

normal development, and this benefits production of RGCs from human stem cells. In the 

absence of Math5 expression, RGCs fail to differentiate from retinal progenitors during 

development (Brown et al., 2001), and mutations in Math5 and Six6 can lead to optic nerve 

hypoplasia (Prasov et al., 2012; Schmitt et al., 2009). In the absence of Brn3 expression, 
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RGCs die shortly after differentiation (Badea et al., 2009). Sox4 and Sox11 were found to be 

critical for RGC differentiation from rodent retinal progenitor cells as well as human iPSCs 

(Al-Shamekh and Goldberg, 2014; Chang et al., 2017). Other approaches to RGC 

differentiation including chemically defined media and signaling pathway manipulation has 

also demonstrated success in generating RGCs and even RGC subtypes (Daniszewski et al., 

2018; Gill et al., 2016; Ohlemacher et al., 2016; Teotia et al., 2017). Use of ESC lines 

engineered to express reporter genes under control of RGC-specific promoters has also 

facilitated differentiation studies (Sluch et al., 2017; Sluch et al., 2015). Progress has also 

occurred in promoting RGC differentiation from retinal Muller glia, which may provide a 

local, endogenous source of cells for replacement therapy (Wan and Goldman, 2016; Wilken 

and Reh, 2016). Important questions remain whichever cell source is used, including 

whether the variety of RGCs will arise naturally after transplantation in vivo, or if it will be 

necessary to direct the specification of different RGC subtypes.

Recent progress in preclinical models of RGC transplantation demonstrated successful local 

integration, synapse formation, responsiveness to light, and growth of a small number of 

axons down the optic nerve to the brain (Venugopalan et al., 2016). Data suggesting that 

these experiments were not confounded by protein transfer included visualization of growth 

cones at increasing distances with survival time, and differences from host RGCs in dendrite 

morphology and response to light, but this issue will need ongoing attention in future work. 

Extending this work to preclinical models of glaucoma is essential. It is not yet clear if the 

injured or degenerating environment will prove toxic to incoming cells or if the prior loss of 

endogenous RGCs provides favorable conditions for engraftment by clearing niches for new 

cells to enter. In addition to local integration within the retina, it is also critical to promote 

RGC axon regeneration through the optic nerve towards the brain, another research area 

with much recent progress including discovery of transcription factors and signaling 

pathways that strongly promote axon growth (Benowitz et al., 2017; Moore et al., 2011; 

Trakhtenberg et al., 2018). Outcomes of these studies will help determine whether the new 

RGCs and/or the host environment will need to be treated to overcome the existing barriers 

to optic nerve axon growth and brain reconnection.

The move to clinical trials can proceed after appropriate preclinical proof of concept and 

safety studies. Neuroprotection and visual function enhancement trials in glaucoma and 

other optic neuropathies are going forward for drug candidates such as neurotrophic factors 

(Chang and Goldberg, 2012), which could also be used to augment a cell-based treatment. 

These are facilitated by novel surrogate biomarkers that may provide a faster indication of 

biological effect and potential for clinical efficacy (Scoles et al., 2014), which should 

likewise facilitate rapid translation to safe human testing.

Photoreceptor Transplantation and Cytoplasmic Material Transfer

Photoreceptor cells are the light-responsive cells of the retina, and consist of rods, which are 

activated in low light, and cones, that are activated in bright light of specific wavelengths. 

Cones are concentrated in the macula, the central region of the retina that provides high 

acuity, color vision. Photoreceptors are terminally differentiated neurons, and once lost, they 

are not replaced. In the developed world, conditions such as advanced RP, age-related 
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macular degeneration (AMD) and diabetic retinopathy – all characterized by photoreceptor 

loss – are the main causes of registered blindness. Photoreceptor replacement therapy is 

under development to provide a therapeutic approach for patients who lack effective 

treatment options. The requirement to establish synaptic connectivity is a significant 

challenge, but transplanted photoreceptors only need to make a few short synaptic 

connections to bipolar cells in order to connect to the remaining circuitry. Further, the 

macula occupies a small area and relatively few functional photoreceptor cells may be 

required for useful vision (there are, for instance, only 20,000 cones in the foveola, the cone-

rich zone at the center of the macula), so even low efficiency photoreceptor transplantation 

may result in clinical benefit.

A fundamental requirement for the development of effective photoreceptor transplantation is 

the establishment of robust protocols that permit the generation of large numbers of bona 

fide photoreceptors from renewable cell sources. Building on the ground-breaking work by 

Yoshiki Sasai, who showed that embryonic stem cells (ESCs) cultured in 3D suspension in 

the presence of Matrigel spontaneously form self-organizing retinal organoids (Eiraku et al., 

2011; Nakano et al., 2012), a number of laboratories have developed culture protocols for 

generating large numbers of postnatal-staged PSC-derived photoreceptors that can be used 

for transplantation (Assawachananont et al., 2014; Decembrini et al., 2014; Gonzalez-

Cordero et al., 2013; Homma et al., 2013; Kruczek et al., 2017; Meyer et al., 2011; 

Reichman et al., 2014; Zhong et al., 2014). Over the last decade, numerous preclinical 

studies have transplanted predominantly rod photoreceptor precursors derived from stem 

cells into mouse models (for reviews see (Aghaizu et al., 2017) and (Santos-Ferreira et al., 

2017)). The transplanted stem cell-derived photoreceptor progeny are capable of restoring 

aspects of visual function. Until recently, it was understood that the observed improvements 

in visual function, at least in models where some endogenous photoreceptors remained, were 

due to donor cells integrating in the host retina. Over the last few years, however, we have 

come to realize that the apparent integration of donor cells was instead due to exchange of 

RNA and protein between donor and host cells (Pearson et al., 2016; Santos-Ferreira et al., 

2016; Singh et al., 2016). Although the mechanisms for cytoplasmic material transfer 

(CMT) are still unknown, the acquisition of proteins may render host cells functional. 

Observed rescue of visual function following transplantation of hESC-derived retinal cells 

(Lamba et al., 2009) was associated with GFP-labelled cells that bore striking resemblance 

to host photoreceptors and are likely to be the result of material transfer. While CMT may 

account for much of the reported outcomes of photoreceptor transplants, a recent study 

demonstrated that the transplantation of cone photoreceptors results in both CMT and donor 

cell integration, and the relative contribution of these two processes depends upon the host 

retinal environment (Waldron et al., 2018), for example where there are no remaining 

photoreceptors, CMT is impossible.

Several new studies involving transplantation of mixed populations of dissociated hPSC-

derived retinal cells and hPSC-derived sheets in models of end-stage retinal degeneration 

have shown improvements in visual function (Mandai et al., 2017a; Singh et al., 2013). 

hPSC-derived photoreceptor sheets have also been transplanted in non-human primate 

retinae (Shirai et al., 2016). Although it is more difficult to generate and isolate large 

numbers of PSC-derived cones for transplantation, this is an important objective because 

Stern et al. Page 9

Cell Stem Cell. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



humans rely mostly on cones for high acuity vision. A recent study involving the 

transplantation of hESC-derived cones in an end-stage model of RP resulted in the formation 

of nascent outer segment-like structures and basal processes that extended towards 

endogenous interneurons (Gonzalez-Cordero et al., 2017). While it is not yet possible to 

conclude whether these cones are light responsive or if the basal terminals represent synaptic 

connections, the transplantation of human PSC-derived cones represents a major step toward 

clinical application. Further optimization and demonstration of robust functional 

connectivity along with the development of GMP-compliant methods to quantify the purity, 

viability, and developmental stage of hPSC-derived photoreceptors are needed to enable the 

initiation of clinical trials. Such methods may include the use of cluster of differentiation 

(CD) cell surface markers to enrich rod (Lakowski et al., 2018) and particularly cone 

precursor cells (Welby et al., 2017), circumventing the use of reporter markers in transgenic 

hPSC lines that cannot be used clinically. More accurate staging of hPSC-derived 

photoreceptors might also be achieved by comparing transcriptomes with those recently 

reported for developing human retina (Hoshino et al., 2017; Welby et al., 2017). While some 

groups have already started to develop GMP-compliant differentiation protocols that 

generate stage-matched, homogeneous populations of hPSC-derived photoreceptors for 

clinical testing (Reichman et al., 2017; Sridhar et al., 2013), further developments are 

needed. These include the development of GMP processes to manufacture sheets of 

photoreceptor cells, methods for enriching cultures for cone photoreceptors, and the 

development of bioreactor technologies with improved aeration and distribution of nutrients 

(DiStefano et al., 2018) and enclosed automated systems to enable GMP-compliant scale up 

of cell manufacture. Notwithstanding the need for further development, we anticipate that 

the first clinical trials of stem cell-derived photoreceptor transplantation to treat advanced 

retinal degeneration will be initiated within the next 10 years. Future developments might 

include, for instance, the use of gene-modified cells that have been engineered to repair 

genetic disease (Burnight et al., 2017) or have reduced immunogenicity or enhanced 

connectivity.

Photoreceptor Replacement and Rescue by Human Fetal Retinal Progenitor 

Cells

In addition to cell replacement strategies to treat diseases in which photoreceptors die, the 

neuroprotective approach is also being pursued - to transplant cells that release trophic 

factors to preserve rather than replace the function of surviving host photoreceptors. 

StemCells Inc., an early leader in the field of regenerative medicine, was the first to use 

human fetal neural stem cells to treat retinal disease. A 2012 Phase ½a study recruited 15 

patients with dry AMD. This first-in-human study aimed to preserve vision by rescuing host 

photoreceptors through a paracrine mechanism involving the secretion of cytokines. 

Progenitor cells (CD133+) expanded from early fetal brain tissue were injected into the 

subretinal space (Cuenca et al., 2013; McGill et al., 2012) with oral immunosuppression, 

and this early study demonstrated safety. Other groups are pursuing stem or progenitor cells 

derived from the retina itself, with the hypothesis that such a cell has a higher chance of 

rescuing or replacing diseased photoreceptors.
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Two groups (ReNeuron and jCyte) have taken up this approach using human RPCs, 

proliferating cells derived from fetal retina, characterized largely by the expression of key 

surface markers. Human RPC transplantation has two potential mechanisms of action: 

photoreceptor rescue and photoreceptor replacement, which target different injection sites – 

the vitreous cavity and the subretinal space, respectively. jCyte has initiated a clinical trial 

based on neuroprotection by injecting RPCs into the vitreous of patients with RP. The 

mechanism of action is based on the hypothesis that one or more cytokines secreted by 

RPCs may preserve photoreceptor function. The phase 1/2a trial was completed and a phase 

2b trial consisting of 70 participants is currently underway. ReNeuron is transplanting a 

somewhat different cell type, also termed an RPC, into the subretinal space. These RPCs are 

cultured under specific conditions, (Aftab et al., 2009; Baranov et al., 2013; Kundu et al., 

2018; Lawley et al., 2015) including low oxygen (Baranov et al., 2014), in order to preserve 

their ability to produce photoreceptors, and they are then injected under the retina (Bharti et 

al., 2014) with the goal of replacing lost rods and cones (Huang et al., 2014) in patients with 

RP or Cone/Rod Dystrophy. This work has also progressed through a phase 1 study, with a 

larger phase 2a study underway. In both jCyte and ReNeuron clinical trials, no systemic 

immunosuppression is used.

As with all transplants of stem or progenitor cells, there remains a risk of uncontrolled 

proliferation following transplant. However, progenitor cells derived from adult or fetal 

tissues are inherently safer than those derived from ESCs or iPSCs, due to lack of 

contaminating pluripotent cells and associated decreased risk of tumorogenesis. Another 

lesson we have learned from these first-in-human studies is that stem and progenitor cells of 

early CNS origin appear to be safe and well tolerated, with no evidence of rejection, 

inflammation, or proliferation. With Phase 2 studies underway, we will learn whether RPCs 

have the capacity to preserve or improve vision in patients with retinal degeneration. 

Important next steps include isolation and transplantation of cone-specified RPCs, as well as 

application of tissue engineering principles such as the use of polymer scaffolds or co-grafts 

of RPC and RPE for macula repair.

RPE Replacement and Repair

The major clinical targets of retinal pigment epithelial (RPE) replacement therapy are AMD 

and Stargardt’s Disease (SD), macular disorders that involve early loss of the RPE cells that 

support overlying photoreceptor cells and the neural retina. The human macula is a small 

region of the central retina, around 5mm in diameter. Damage to this area is debilitating due 

to impairment of high acuity vision. Dry AMD is a highly prevalent condition in which 

gradual loss of RPE cells is followed by photoreceptor cell loss and diminished vision. 

About 10% of dry AMD cases progress to wet AMD, with rapid vision loss due to ingrowth 

of choroidal vessels that are normally separated from the retina by Bruch’s membrane. 

Although treatment is available for wet AMD, there is no effective treatment for earlier stage 

dry AMD (Zarbin et al., 2014). SD is a less prevalent autosomal recessive juvenile macular 

degeneration that lacks effective treatment. SD is most frequently associated with an 

ABCA4 mutation that reduces ATP-binding transporter processing of all-trans retinal during 

the visual cycle in photoreceptor cell discs. This defective pigment processing leads to the 

accumulation of toxic lipofuscin and A2E lipids, which cause RPE and photoreceptor cell 
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atrophy (Molday, 2015). Clinically, both AMD and SD are characterized by early pigment 

mottling and later hypotrophy of the macula RPE with accompanying loss of central vision. 

Stem cell-derived RPE are being developed to replace the RPE cells that are lost in each 

condition. After cell transplantation, vision measures and retina imaging provide valuable 

outcome measures to evaluate stem cell-based RPE replacement therapies.

Considerable progress has been made toward efficient protocols that direct differentiation of 

both ESCs and iPSCs to RPE progeny. The potential for unlimited expansion makes PSCs 

an attractive source cell. Subretinal transplantation of PSC-derived RPE (PSC-RPE) rescues 

vision in animal models of degenerating retina (Carr et al., 2009; LaVail, 2001; Lund et al., 

2006; McGill et al., 2017; Riera et al., 2016; Sun et al., 2015; Wu et al., 2016). These 

encouraging preclinical findings led to clinical trials of ESC- and iPSC-derived RPE 

transplantation in the US, Japan, China, Israel, UK, and South Korea (Figure 2). Reports 

from early Phase trials transplanting PSC-RPE suspensions (Schwartz et al., 2016; Song et 

al., 2015) are encouraging, with an ESC-derived RPE cell suspension found safe for AMD 

(NCT01344993) and SD (NCT01469832). Transplantation of ESC-RPE resulted in long-

term macula pigmentation, possibly due to transplanted cell persistence or stimulation of 

endogenous RPE proliferation. These first-in-human studies addressed the major risks of 

PSCs, which are inherently plastic and tumorigenic (Kuroda et al., 2013), by demonstrating 

safety. Some concern over tumor formation remains, recently heightened by the finding that 

ESC or iPSC cultures rapidly acquire oncogene mutations during expansion (Merkle et al., 

2017). This may occur even in a GMP setting, as an oncogene mutation temporarily halted 

the Riken clinical trial of iPSC-RPE prepared for AMD (Garber, 2015). An additional 

challenge for PSC therapies is that even after extensive differentiation, PSC-RPE progeny 

remain stalled at the fetal stage of development (Buchholz et al., 2009; Krohne et al., 2012; 

Leach et al., 2016; Liao et al., 2010), and we do not yet know the extent of maturation 

achievable subsequent to transplantation in vivo. Strategies to produce a mature phenotype 

in PSC-derived RPE are under development (May-Simera et al., 2018). Although challenges 

remain, the remarkable successes of PSC-RPE transplantation render it the leading RPE 

replacement strategy.

The RPE-replacement pipeline includes RPE progeny derived from adult RPE stem cells 

(RPESCs) that are normally present in the native RPE layer. Adult RPESC have limited 

proliferative potential and do not form tumors (Salero et al., 2012). They are poised to 

produce RPE progeny that closely resemble native RPE cells (Blenkinsop et al., 2015). 

Preclinical transplantation of RPESC-derived RPE revealed that an intermediate RPE 

progenitor stage is significantly more effective at vision rescue than either more or less 

differentiated RPE progeny (Davis et al., 2017). In this regard, RPESC-RPE are like other 

CNS cells for which the progenitor stage engrafts and repairs more effectively (Brundin et 

al., 1986; Ganat et al., 2012; Warrington et al., 1993). In addition to improved vision rescue 

in animal models, the use of progenitor stage progeny reduces manufacturing time and 

expense.

While several groups are pursuing clinical development of an RPE cell suspension that 

allows integration into the host RPE monolayer, an alternative approach is to implant stem 

cell-derived RPE growing on a bioengineered scaffold, which can improve stability and 
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maintain cell polarization (Diniz et al., 2013; Hsiung et al., 2015; White and Olabisi, 2017). 

Recent reports of on-going clinical trials (NCT01691261 and NCT02590692) indicate good 

safety for surgical implantation of RPE-containing scaffolds (da Cruz et al., 2018; Kashani 

et al., 2018) (Figure 2). Specialized delivery devices have been developed to inject patches 

of cell-containing scaffolds, which are typically laid on top of the existing RPE layer. These 

devices decrease the size of the retinotomy (the cut made in the retina for delivery) and thus 

reduce related surgical complications, and enable precise positioning (Fernandes et al., 2017; 

Stanzel et al., 2012). Additional surgical approaches for transplantation into the sub-retinal 

space include a unique trans-choroidal cell delivery instrument (Ho et al., 2017).

Immune reactivity is an important consideration in the success of RPE transplantation. 

Studies using patient-derived iPSC-derived RPE demonstrate the feasibility of autologous 

transplantation (Mandai et al., 2017b), nevertheless, most approaches are using allogeneic 

donor cells. The special immune privilege of the eye is due in large part to normal RPE 

functions, including formation of the blood-retina barrier and production of 

immunomodulatory cytokines, both of which may be perturbed by RPE disease, RPE cell 

loss, and by surgical trauma during transplantation (Streilein et al., 2002; Xian and Huang, 

2015). Clinical trials with allogenic PSC-RPE use systemic immune suppression for 3–12 

months post-transplantation; a limited immune suppression period is thought to provide time 

for ocular immune privilege to be re-established. The promise of autologous RPE from 

iPSCs, which are hoped to be immune-compatible to the patient, is real, but currently limited 

by the practical expense of manufacturing an individual-use iPSC-RPE product. In the 

future, HLA-modified cells or multiple banks of stem cell-derived RPE manufactured from 

PSC or adult RPESC sources to enable HLA matching, may improve RPE graft survival.

The RPE supports the overlying retina by performing a wide spectrum of functions, such as 

phagocytosis, visual pigment processing, fluid and ion transport, and polarized secretion of 

cytokines. While subretinal RPE transplantation aims to replace these multiple functions, 

transplantation of non-RPE cells has been pursued with the rationale that they may counter 

disease through trophic factor secretion. Clinical trials with subretinal umbilical cord stem 

cells (NCT01226628), subretinal neural stem cells (NCT01632527), and intravitreal retinal 

progenitor cells (NCT02320812) are based on this trophic support mechanism of action. 

However, delivery of non-retinal cells to the subretinal space raises concerns regarding 

possible complications, given the delicate, specialized physiology of the target tissue. A 

significant unknown for each approach is whether the transplanted cells will survive, adapt 

to, and possibly enhance, the disease-damaged subretinal environment, or whether 

biochemical reconditioning of the environment will be necessary for successful cell 

engraftment (Sugino et al., 2016).

We are now at an exciting point with clinical results emerging from several stem-based trials 

around the world, through which we have the opportunity to learn about the strengths and 

weaknesses of different study elements. Finally, beyond transplantation, stimulation of 

endogenous adult RPESCs present in the eye to produce new, autologous RPE in situ 
without surgery is an exciting future direction.
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Bioengineering Approaches to Tissue Regeneration and Stem Cell Therapy 

for the Eye

Combining stem cell products with bioengineering offers great potential for tissue and organ 

repair, while raising new challenges to enter the clinical mainstream (Stevens and Murry, 

2018). As shown in Figure 3, bioengineering approaches can benefit ocular regenerative 

medicine by providing 1) scalable and modular 3D cell culture systems for cost-efficient 

stem cell expansion and/or differentiation, 2) stem cell isolation and purification, 3) 

biomanufacture and bioassembly of functional eye tissues, including 3D printing, 4) delivery 

vehicles for better in vivo integration, and 5) engineered tissue constructs for in vivo 
implantation and functional tissue regeneration. Cutting-edge biomaterials with gradients of 

biomacromolecules such as trophic factors, with tunable mechanical properties, or with 

micro-/nanopatterned topography have great potential to improve production of ocular 

tissues or to activate stem and progenitor cell populations present in the eye to encourage 

endogenous repair.

A variety of bioengineered implants designed to promote corneal regeneration have been 

tested in preclinical and clinical studies (Griffith et al., 2016). These include limbal 

epithelial cells on amniotic membranes (Sangwan et al., 2011), corneal stromal cells on 

polyglycolic acid (PGA) fibrous scaffolds (Hu et al., 2006) or silk substrates (Ghezzi et al., 

2017), and carrier-free corneal epithelial and endothelial cell sheets generated on a thermo-

responsive polymer (Umemoto et al., 2013). Advances in production of lens progenitor cells 

and lentoid bodies from human PSCs (Yang et al., 2010) offer plentiful cells that could be 

combined with bioengineering strategies such as use of sacrificial gelatin bead-hydrogel 

templates to create lens culture chambers (Wang et al., 2017), and support production of a 

reproducible lens with desired curvature and mechanics. Primary TM cells have been 

cultured on synthetic, microfabricated, well-defined porous SU8 scaffolds to achieve an in 
vivo-like structure and outflow that responds to applied drugs as expected (Torrejon et al., 

2016).

Over the past few years, we have come to appreciate the self-assembly properties of stem 

cells. Pioneering work in the eye showed 3D retina, RPE and lens-like structures from 

mouse ESCs (Eiraku et al., 2011; Hirano et al., 2003). Using human PSCs, formation of 

optic cup and stratified retina was achieved (Nakano et al., 2012). Extending 3D culture to 

several months yields multi-cell type retinal organoids including later-born photoreceptor 

progenitor cells, and layers of differentiated photoreceptors that can develop outer segment 

structures (Lakowski et al., 2018; Wahlin et al., 2017). The differentiation of retinal 

organoids can be accelerated or enhanced by hypoxia (Chen et al., 2016) or bioreactor use 

(DiStefano et al., 2018). Organoids may prove valuable for producing specific retinal cell 

types or 3D retinal structures for transplantation. This is particularly important for 

conditions such as geographic atrophy, an advanced form of dry AMD in which RPE, neural 

retina, and the underlying choroidal vasculature degenerate in growing atrophic patches. 

Retinal multi-layer sheet transplant surgery has advanced (Seiler and Aramant, 2012) and 

preliminary studies with human ESC-retinal grafts show evidence of maturation in a primate 

model (Shirai et al., 2016), although some engrafted cells produced rosette-like structures, 
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previously seen upon fetal retinal progenitor transplantation. We envision that incorporating 

bioengineering approaches may better preserve retinal layering and integration in vivo. At 

the vanguard, adult RPESC- or PSC-derived RPE cells cultured with natural or synthetic 

scaffolds show key features of RPE monolayers that are preserved after transplantation in 

animal models, among which PLGA, parylene thin film, and polyester membranes are being 

developed for clinical studies (da Cruz et al., 2018; Kashani et al., 2018; Song and Bharti, 

2016; Stanzel et al., 2014; Tian et al., 2017). Bringing together appropriately layered RPE 

with multi-layered neural retina is important for proper development and function of both, 

and represents a significant future challenge, as does connecting the output RGC axons with 

the brain via a rebuilt optic nerve. These challenges will undoubtedly require the combined 

creative forces of stem cell research and bioengineering.

Challenges in Bringing Ocular Regenerative Therapy to Patients

Across these efforts to repair diverse ocular tissues, we see common hurdles. Immune 

response is a major issue for allogeneic cell transplants, which can be alleviated by HLA-

matching. This has spurred production of HLA-defined banks of induced pluripotent stem 

cells (de Rham and Villard, 2014) and HLA-engineered iPSCs with potential as universal 

donor lines (Gornalusse et al., 2017). Developing efficient and scaled clinical manufacturing 

is critical to ensure that the cell product can be delivered to patients safely, effectively, and at 

a cost that is reasonable, appropriately reimbursed, and economically responsible. For any 

stem cell source, even those with great expansion potential, cell manufacture will at some 

point need to be repeated, and ensuring that each batch is comparable represents a 

significant challenge (NAS, 2017). Identification of the Critical Quality Attributes, i.e. 

characteristics that ensure the desired product quality, is difficult for cell products, which are 

highly complex, change over time, and can be affected by minor changes in the many 

molecules used in manufacturing. Currently, cell products are defined by a limited number 

of markers to reflect identity, purity, and potency, but there is recognition that this level of 

characterization may be inadequate (Barazzetti et al., 2016). We look ahead to improved 

phenotyping methods, such as single cell-level characterization that better define cell 

product composition. To enter the clinic, testing in animal models is essential. Disease 

models are often problematic, however, as they don’t necessarily predict outcomes in 

patients. Animal safety testing for toxicity and tumorigenicity typically is done under good 

laboratory practice (GLP), with hundreds of animals, extensive live phase observation, and 

histological analysis resulting in a significant financial barrier of multimillion dollar costs. 

Here we ask, could iPSC-based in vitro disease eye models, which are advancing in 

sophistication (Song and Bharti, 2016), be useful as substitutes for animal testing? 

Throughout the process of bringing a cell therapy to the clinic, a close working relationship 

with the regulatory authority is advantageous and encouraged by bodies such as the FDA in 

the US, in order to ensure that an Investigational New Drug application for clinical trial has 

the best chance of success. Once clinical evidence has been obtained, several countries have 

implemented mechanisms to accelerate regenerative therapy development, such as the 

Regenerative Medicine Advanced Therapy (RMAT) designation in the US. Japan pioneered 

accelerated conditional approval of cell therapies that allow reimbursement, contingent on 

further gathering of positive post-market clinical outcomes. On the one hand, these 
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mechanisms to accelerate therapy development are welcome, given the great unmet need, 

but we must ensure that the quality and scrutiny of post-approval data is high to eliminate 

ineffective therapies from the healthcare marketplace (Smith and Brindley, 2017). Many 

groups are moving through this process with new ocular regenerative medicine products, and 

while arduous, the shared goal is to ensure safe and effective therapies for eye disease. As a 

tragic reminder of what can happen if this process is side-stepped, inappropriate use of cell 

products in “patient-funded research” by stem cell clinics that skirt appropriate regulatory 

oversight, has led to devastating outcomes, for example, intraocular transplantation of 

liposuctioned fat-derived cells has blinded several patients (Kuriyan et al., 2017).

Conclusion

The exciting advances for diverse ocular indications across different eye tissues reveal a 

promising pipeline of clinical translation (Figure 2). We ask: ‘How far are we from creating 

not just single eye tissue modules, but modules that function together, and perhaps even a 

whole eye?’ PSCs can be coaxed down multiple ocular lineages, producing structures with 

corneal, lens, and retinal zones (Hayashi et al., 2017; Hayashi et al., 2016). Progress is being 

made in whole-eye transplantation with a patent vasculature, although a certain challenge is 

how to connect the neural elements so that the transplanted eye functions completely 

(Bourne et al., 2017). Our ability to even contemplate this question is indebted to studies of 

development and regeneration in model organisms and advances in human stem cell 

systems. What was once unfathomable now comes into focus as challenging yet tractable. 

This audacious goal is being pursued by teams of scientists, engineers, and clinicians across 

disciplines through concerted, collaborative efforts. When Charles Bonnet lost his sight, he 

relied on close collaborators and cultivated a large network of scientists around the world 

with whom he communicated regularly, writing hundreds of letters each year. It is obvious 

from his collected writings (Bonnet, 1779) that he valued and respected the contributions of 

others, and that he understood that science progresses best by working together: “We can 

persuade ourselves that the more we investigate deeply, the more uses will emerge… The 

truths become brighter as one advance builds on another”.
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Refer to Web version on PubMed Central for supplementary material.
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Stern et al. review the status of clinical and preclinical studies for stem cell-based repair, 

covering key eye tissues from front to back, from cornea to retina, and including 

bioengineering approaches that advance cell product manufacturing.
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“In general, when a naturalist has a little disposition to reflect, he is risen soon 

by thought above the objects that his eyes behold… Who knows if this will not 

lead to some discovery that will perfect medicine and surgery?” –Charles 

Bonnet, [1779]
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Figure 1. Ocular Stem Cells in Health and Disease.
Schematic showing the location of corneal limbal, lens, trabecular meshwork (TM), and 

RPE stem cells, and depicting ocular disorders that are being targeted by regenerative 

therapies.
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Figure 2. Clinical Pipeline for Cell-based Therapies for Eye Disease.
Corneal limbal stem cells and stromal cells have advanced to clinical practice, while corneal 

endothelial stem/progenitor cells are in preclinical stages of development, as are trabecular 

meshwork stem cells. Phase I and II clinical trials are ongoing for RPE replacement using 

PSC-derived RPE in suspension or on a matrix, while adult RPE stem cells are in late stage 

preclinical development. Subretinal neural stem cells (NSCs), umbilical cord stem cells 

(UCSCs), and intravitreal or subretinal RPCs clinical trials aim to provide trophic support to 

prevent retinal cell death.
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Figure 3. Bioengineering Applied to Cell and Tissue Manufacture and Delivery.
Each type of stem cell presents unique manufacturing, regulatory, and clinical challenges, 

that may benefit from approaches depicted in the outer circle of the schematic. The inner 

circles depict goals common to all stem cell products, including achieving manufacturing 

standards and testing appropriate for each clinical stage, and efficient manufacturing and 

banking, for example using cryopreservation methods that enable easier distribution to 

clinical sites and flexibility in administration. PSCs readily expand but may be challenging 

to differentiate appropriately into desired cell types at acceptable purity, while adult stem 

cells expand less readily but are generally committed to differentiate into specific progeny. A 

more limited supply of cells from adult sources means multiple cell banks must be 

manufactured, with challenges associated with comparability testing. Integrating 

bioengineering approaches can aid each manufacturing step and has the potential to develop 

complex 3D products to replace key elements in a tissue or organ.
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